
Autonomous Kart Racing: End-to-End Self-Driving with Behavioral
Cloning in CARLA Simulator

Francisco Ramos

Abstract— This paper presents a study on implementing
behavioral cloning algorithms for autonomous driving in the
CARLA simulator environment. Leveraging convolutional neu-
ral networks (CNNs), our research focuses on training models
to predict steering angles based on input images, enabling
autonomous navigation of racetracks. We explore two neural
network architectures, SimpleNet and Net, assessing their
performance in capturing driving behaviors and handling
diverse scenarios. The results demonstrate promising accuracy
and generalization, with the more complex Net architecture
outperforming SimpleNet. Additionally, we augment the dataset
with multiple camera perspectives to enhance model robustness
and versatility. While our study highlights the potential of
behavioral cloning for autonomous driving, further research
is needed to address challenges such as real-world applicability
and adaptation to varied driving conditions. Overall, our work
contributes to advancing autonomous vehicle technologies, with
implications for both recreational racing events and broader
transportation applications.

I. INTRODUCTION

Autonomous vehicles have transformed from a futuristic
vision into a tangible reality on today’s roads. These vehi-
cles navigate urban environments through the integration of
three core modules: perception, planning, and control, which
collectively form a robust autonomous driving platform.

The adoption of autonomous vehicles offers several poten-
tial benefits, including enhanced safety, reduced driver work-
load, improved environmental efficiency, and increased com-
fort. Competitions such as the Autonomous Racing Karting
series have further propelled advancements in autonomous
vehicle technologies by challenging and innovating the ca-
pabilities of these systems.

Our project is affiliated with the Robot Open Autonomous
Racing (ROAR) team. We leverage the CARLA simulator
[5], which is configured to mirror the parameters of our
actual system, allowing for rigorous software testing and
development before deployment on real-world hardware.

The primary objective of this project is to implement
a behavioral cloning algorithm. This algorithm trains an
agent to emulate expert driving behaviors, enabling the
vehicle to autonomously navigate a racetrack. Although
behavioral cloning may not be the most scalable solution
for autonomous driving—due to challenges such as scenario
variability and trajectory inconsistencies—it remains invalu-
able. In racing contexts, particularly under conditions where
primary algorithms fail or sensors malfunction (such as GPS
failure under bridges), behavioral cloning provides a reliable
fallback mechanism.

Furthermore, the specific nature of racetrack environments
simplifies data extraction, making behavioral cloning an

attractive approach for closed-circuit racing scenarios. We
will discuss the strengths and limitations of this approach,
including its adaptability to varied racing conditions and its
potential as a supplementary strategy in autonomous vehicle
technology.

II. BACKGROUND

The advent of convolutional neural networks (CNNs)
has markedly advanced the field of pattern recognition.
Traditional methods relied heavily on handcrafted feature
extraction followed by classification. In contrast, CNNs
automatically learn features directly from training data, a
method particularly effective in image recognition tasks due
to the convolution operation’s natural fit for processing
2D images. This shift towards learned features has seen
widespread adoption, bolstered by the availability of large
labeled datasets like the Large Scale Visual Recognition
Challenge (ILSVRC) and accelerated by the computational
power of GPUs, which has dramatically enhanced both
learning and inference speeds [1], [2], [3], [4].

In a seminal application of CNNs, NVIDIA demonstrated
the feasibility of using a single front-facing camera to
directly map raw pixels to steering commands in autonomous
vehicles. This end-to-end learning approach, outlined in
[1], allows the vehicle to operate in complex environments
like traffic on local roads, highways, parking lots, and
even unpaved roads without explicit road feature detection
training. Instead, the system learns to interpret crucial road
features solely from the driver’s steering angles, leading to
more compact network architectures and potentially superior
performance due to the optimization of internal components
tailored specifically to driving tasks [1].

The success of CNNs in these applications, however, is
not devoid of limitations. Scalability issues arise when deal-
ing with variable scenarios and environmental conditions.
Moreover, CNNs trained on specific driving behaviors tend
to replicate only those maneuvers learned during training,
showing a significant limitation in their ability to adapt to
new trajectories or maneuvers not covered in the training
set. This limitation becomes particularly evident in scenarios
where an image might be associated with multiple potential
steering responses, thereby constraining the flexibility of the
trained model in real-world operations.

Our work is thus positioned within this ongoing explo-
ration of autonomous vehicle technologies, seeking to refine
and expand upon the neural network methodologies that
have shown promising results but also exhibit clear areas



Fig. 1: Control diagram depicting the integration of CNN for
real-time steering prediction.

for improvement in terms of versatility and adaptability to
diverse driving conditions.

III. METHODOLOGY

This section outlines the methodology used for integrating
convolutional neural networks (CNNs) into our autonomous
GoKart project. The process involves data collection through
simulation, preprocessing, model training, and real-time
steering angle prediction.

A. Control Diagram

Our system replaces traditional sensors and planners with
a CNN that processes images from a front-facing camera to
predict steering angles directly. Figure 1 illustrates this inte-
gration. The CNN acts as the perception module, receiving
raw image data and outputting predicted steering angles for
the PID controller to execute.

B. Data Collection

The dataset essential for training our convolutional neural
network (CNN) is procured using the CARLA simulator.
To facilitate this, a dedicated node has been developed.
This node actively monitors and captures data from two
primary sources: the camera feed and vehicle state topics.
The captured images, along with their corresponding steering
angles, are stored in a designated folder. Each entry is
cataloged in a JSON file that contains paths to the images
and their associated labels.

For the data acquisition process, a human expert manually
controls the vehicle within the simulation to execute specific
driving maneuvers. This manual control ensures that the
data reflects realistic driving patterns and helps introduce
variability in the dataset. To further enhance the diversity of
the training data, the same trajectory is driven multiple laps
under varying conditions.

Additionally, to broaden the model’s applicability to dif-
ferent driving scenarios, we are compiling multiple datasets,

each representing unique trajectories and environmental con-
ditions. This diversified dataset strategy aims to robustify the
CNN’s adaptability to changes in driving environments.

The control setup and the recording methodology are
illustrated in Figure 2, which provides a visual representation
of the data collection framework.

Fig. 2: Schematic of the data collection setup using the
CARLA simulator, depicting the integration of manual con-
trol and data recording nodes.

C. Data Processing

The data processing pipeline initiates with label normal-
ization where steering angles are rescaled to a range from 0
to 1, with 0 representing a full left turn and 1 a full right
turn. This normalization is fundamental for training the CNN
effectively.

Further, data loaders play a pivotal role in efficient data
management during model training. They are employed to
ensure that images are not only normalized but also resized
to a consistent dimension of 256×256×3, down from their
original size of 376 × 1344 × 3 (height, width, channels).
This resizing might lead to a loss of some detailed features;
however, such detail is extraneous as the model’s primary
objective is to discern the road’s layout and generate corre-
sponding steering commands.

The standardization of images involves normalizing pixel
values to a standard scale using predefined means and
standard deviations (mean = [0.485, 0.456, 0.406], std =
[0.229, 0.224, 0.225]). This step is crucial for maintaining
computational efficiency and consistency during training, and
it’s detailed in the project’s code repository.

Examples of a raw and a transformed image are presented
in Figure 3 to illustrate the preprocessing effects.

Concluding the preprocessing phase, the dataset is seg-
mented into training and validation sets with an 80% split
favoring training. This approach is tailored to mimic expert
driving behavior within specific scenarios, rather than aiming
for generalization across unseen environments. This method
aligns with the project’s objectives of behavior cloning on
predetermined circuits.

D. Data Augmentation with additional cameras

Following a similar approach to that described in [1], we
have enhanced the robustness and versatility of our model by
expanding our data collection setup. Two additional cameras
have been integrated, each positioned at ±30 degrees relative
to the front-facing (0-degree) camera. This configuration



(a) Example of a Raw Image from the Dataset.

(b) Example of a Transformed Image.

Fig. 3: Comparison of a raw and transformed image to
demonstrate the preprocessing effects.

broadens the range of captured perspectives, simulating more
complex driving scenarios and enriching the training data
available for our model.

Fig. 4: Sketch of data augmentation and perception field with
additional cameras.

Each camera feeds into the same data collection system
but with a crucial modification: the steering angles associated
with the images from the left and right cameras are adjusted
to reflect their respective vantage points. Specifically, a
predetermined amount is added to the steering angles for
images from the left camera, and an equivalent amount is
subtracted from those captured by the right camera. This
adjustment compensates for the angular displacement of
the cameras and helps in training the model to correct its
orientation when faced with similar skewed perspectives.

This augmented dataset is particularly valuable as it trains

the vehicle to recognize and correct for improper orienta-
tions. When the vehicle encounters a situation where it is not
optimally aligned with the road, it can refer to these trained
responses to adjust its steering angle accordingly and return
to the correct orientation.

E. Models (Architectures)
a) Neural Network Architectures: Two neural network

models, SimpleNet and Net, are developed to explore the
trade-offs between simplicity and complexity in the context
of behavioral cloning for autonomous driving. SimpleNet
adopts a straightforward architecture with fewer layers,
whereas Net incorporates a more complex design inspired
by Nvidia’s architecture for self-driving cars [2].

SimpleNet consists of two convolutional layers with 24
and 36 filters, both using 5x5 kernels and a stride of 2. This
is followed by three fully connected layers with sizes 100,
50, and 1 unit respectively, with ReLU activations and a
dropout rate of 0.1 for regularization.

Net expands on this by including five convolutional layers
with varying numbers of filters and kernel sizes, alongside
more complex fully connected layers that progressively re-
duce from 100 to 10 units before reaching the output. It also
uses ReLU and dropout at a rate of 0.1.

Both models are tailored to process input images and
predict steering angles, with the difference in architecture
intended to assess the impact of network complexity on the
accuracy and efficiency of behavioral cloning in real-world
driving scenarios. A summary of these architectures is shown
in Table I.

TABLE I: Comparison of Neural Network Configurations

Config SimpleNet Net
Input Channels 3 3

Convolutional Layers 2 (24 filters, 36 filters) 5 (24, 36, 48, 64, 64 filters)
Conv Kernel Sizes 5x5 5x5, 3x3, 3x3, 3x3, 3x3

Strides 2 2, 2, 2, 1, 1
Fully Connected Layers 3 (100, 50, 1 units) 4 (100, 50, 10, 1 units)

Dropout 0.1 0.1

IV. IMPLEMENTATION
A. Model Training

Both models were trained using a backpropagation al-
gorithm with Adam optimizer, chosen for its effectiveness
in handling sparse gradients and its adaptive learning rate
capabilities. Training was conducted over 50 epochs with a
batch size of 32. The loss function used was Mean Squared
Error (MSE), which is standard for regression tasks such as
predicting steering angles. Early stopping was implemented
to prevent overfitting, ceasing training if validation loss did
not improve for 5 consecutive epochs.

B. Validation
Model validation was performed at the end of each training

epoch to monitor performance and adjust hyperparameters
accordingly. Validation metrics included MSE and Mean
Absolute Error (MAE) to assess the accuracy of steering
angle predictions. The validation set comprised 20% of the
total dataset, selected randomly to ensure diversity.



V. RESULTS

A. Train and Validation Results

During the training and validation phases, the performance
metrics indicated that Net achieved lower Mean Squared
Error (MSE) and Mean Absolute Error (MAE) than Sim-
pleNet, demonstrating superior accuracy and generalization
on unseen data. The analysis of the loss curves revealed
a consistent reduction in training loss, although a plateau
towards the later epochs suggests that extending training
duration may not result in significant further improvements.

(a) Net (b) SimpleNet

Fig. 5: Comparison of Training and Validation Loss Curves
for Neural Network Models

TABLE II: Validation Results for the SimpleNet and Net
Models

Model Mean Absolute Error (MAE)
SimpleNet 0.0214

Net 0.0231

We further assessed model performance by comparing
predictions against actual non-dimensional steering angle
values on the validation dataset. Figure 6 displays a scatter
plot of actual versus predicted values, where a line with a
slope of 1 indicates perfect prediction accuracy.

(a) Validation Performance of
Net Model

(b) Validation Performance of
SimpleNet Model

Fig. 6: Validation Data Model Fitness Comparison

B. Feature Maps

To deepen our understanding of the convolutional layers’
functionality within our models, we examine the feature
maps produced by these layers. These visualizations help
illustrate how the models process and interpret input images,
particularly in the context of driving scenarios. Feature maps
reveal the patterns and spatial hierarchies that the neural

networks have learned, providing insight into the different
features each model emphasizes during training.

Figure 7 shows the feature maps from selected convo-
lutional layers of both models. Each subfigure represents
a layer’s output when processing the same input image,
highlighting the distinct ways in which SimpleNet and Net
extract and prioritize various features.

(a) Feature Maps from Net
(b) Feature Maps from Sim-
pleNet

Fig. 7: Visualization of Convolutional Layer Outputs for Net
and SimpleNet Models

C. Inference on Images

To evaluate the effectiveness of the trained models, in-
ferences were conducted on a sequence of images extracted
from a video that represents a complete lap of the circuit
used for data collection. This approach allows us to directly
compare the predicted steering angles with the expert’s actual
maneuvers during the lap. Visual aids such as a steering
wheel graphic and a comparison bar are incorporated into
the images to enhance the visualization of the model’s
predictions.

The inference results are displayed in Figure 8, show-
casing how the models handle different driving scenarios
like curves and straight paths. Further, Figure 9 presents
a detailed comparison of predicted versus actual steering
angles over a sequence of video frames, highlighting the
models’ performance over continuous driving sequences.

The mean absolute error (MAE) for each model is tabu-
lated below, including results from applying a noise-reducing
exponential filter to the output.

TABLE III: Mean Absolute Errors for Different Models

Model Mean Absolute Error (degrees)
SimpleNet 0.3037

SimpleNet (Filtered) 0.2081
Net 0.3181

Net (Filtered) 0.2052



(a) Example 1: Right Curve

(b) Example 2: Straight

(c) Example 3: Left Curve

Fig. 8: Inference Examples Illustrating Different Driving
Scenarios (Steering angles are in degrees).

For a live demonstration of the video inference, follow
this link: https://drive.google.com/file/d/
1FAz_LlDRw2X5yyNE_WU86OxmwSWP06J4/view?
usp=sharing.

D. Inference on Real-Time Control

The models were further tested in a dynamic environment
using the CARLA Simulator to demonstrate real-time control
capabilities. This setup enabled the models to autonomously
navigate the simulated vehicle based on real-time image in-
puts, effectively showcasing their ability to make immediate
driving decisions.

Experience this live demonstration by visiting the
link: https://drive.google.com/file/d/
138B57XoGlEkzMtahvRXlAw-HaDrrmjFp/view?
usp=drive_link.

VI. DISCUSSION

The results of our study demonstrate the feasibility and
effectiveness of implementing behavioral cloning algorithms
for autonomous driving in the CARLA simulator environ-
ment. Through the integration of CNNs, we have successfully
trained models to predict steering angles based on input
images, enabling the simulated vehicle to autonomously
navigate a racetrack.

One notable success of our approach is the achievement
of low MAE during both training and validation phases.
Our more complex model, Net, outperformed the simpler
SimpleNet architecture, showcasing the importance of net-
work complexity in capturing the nuances of driving be-
haviors. Additionally, the augmentation of the dataset with
additional camera perspectives helped improve the robustness
and versatility of our models, particularly in handling skewed
viewpoints and diverse driving scenarios.

(a) Predicted vs. True Steering Angle Sequence for
SimpleNet model for a selected track

(b) Predicted vs. True Steering Angle Sequence for Net
model for a selected track

Fig. 9: Comparison of Predicted and True Steering Angle
Sequences in a Video for Models with Different Complexities

However, our study also reveals several limitations and
areas for improvement. Despite the overall success of our
models, there were instances where predictions deviated sig-
nificantly from the ground truth, especially during complex
maneuvers such as sharp turns or sudden lane changes. This
indicates the need for further refinement and optimization of
the neural network architectures to better generalize across
a wider range of driving scenarios.

Furthermore, while our models demonstrated promising
performance in the simulated environment, their real-world
applicability may be limited by factors such as variability in
road conditions, unpredictable obstacles, and environmental
factors like lighting and weather conditions. Future research
should focus on enhancing the robustness and adaptability
of behavioral cloning algorithms to ensure safe and reliable
autonomous driving in diverse real-world settings.

VII. CONCLUSION
In conclusion, our study highlights the potential of be-

havioral cloning algorithms for autonomous driving applica-
tions, particularly in closed-circuit racing scenarios simulated
in environments like CARLA. By leveraging convolutional
neural networks, we have demonstrated the ability to train
models that can accurately predict steering angles based on
input images, enabling autonomous navigation of racetracks.

While our results are promising, there is still much room
for improvement and further research. Enhancing the ro-
bustness and adaptability of our models to handle diverse
driving scenarios and real-world conditions remains a key
challenge. Additionally, exploring advanced techniques such
as reinforcement learning and model fusion could lead to
further advancements in autonomous driving technology.



Overall, our study contributes to the ongoing efforts to
develop safe, efficient, and reliable autonomous vehicle sys-
tems, with potential applications ranging from recreational
racing events to commercial transportation and beyond.

VIII. ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to all those
who contributed to the success of this project. Special thanks
to the members of the Robot Open Autonomous Racing
(ROAR) team at the University of California, Berkeley
for their support, technical expertise, and valuable insights
throughout the development process. We would also like to
extend our appreciation to the organizers and developers of
the CARLA simulator for providing an invaluable platform
for experimentation and research in autonomous driving.

REFERENCES

[1] M. Bojarski et al., ”End to End Learning for Self-Driving
Cars,” arXiv preprint arXiv:1604.07316, 2016. [Online]. Available:
https://arxiv.org/abs/1604.07316

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ”ImageNet Clas-
sification with Deep Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems 25, 2012, pp. 1097–
1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

[3] L. D. Jackel, D. Sharman, Stenard C. E., Strom B. I., and D Zuckert,
”Optical character recognition for self-service banking,” AT&T Tech-
nical Journal, vol. 74, no. 1, pp. 16–24, 1995.

[4] ”Large Scale Visual Recognition Challenge (ILSVRC).” [Online].
Available: http://www.image-net.org/challenges/LSVRC/

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
”CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.


